Automatic speech recognition in the diagnosis of primary progressive aphasia
نویسندگان
چکیده
Narrative speech can provide a valuable source of information about an individual’s linguistic abilities across lexical, syntactic, and pragmatic levels. However, analysis of narrative speech is typically done by hand, and is therefore extremely time-consuming. Use of automatic speech recognition (ASR) software could make this type of analysis more efficient and widely available. In this paper, we present the results of an initial attempt to use ASR technology to generate transcripts of spoken narratives from participants with semantic dementia (SD), progressive nonfluent aphasia (PNFA), and healthy controls. We extract text features from the transcripts and use these features, alone and in combination with acoustic features from the speech signals, to classify transcripts as patient versus control, and SD versus PNFA. Additionally, we generate artificially noisy transcripts by applying insertions, substitutions, and deletions to manually-transcribed data, allowing experiments to be conducted across a wider range of noise levels than are produced by a tuned ASR system. We find that reasonably good classification accuracies can be achieved by selecting appropriate features from the noisy transcripts. We also find that the choice of using ASR data or manually transcribed data as the training set can have a strong effect on the accuracy of the classifiers.
منابع مشابه
Development, Cross-Cultural Adaptation, and Psychometric Characteristics of the Persian Progressive Aphasia Language Scale in Patients With Primary Progressive Aphasia: A Pilot Study
Introduction: Primary Progressive Aphasia (PPA) is a neurological condition characterized by progressive dissolution of language capabilities. The Progressive Aphasia Language Scale (PALS) is an easy-to-apply bedside clinical scale capable of capturing and grading the key language features essential for the classification of PPA. The objective of the present study was to develop and validate th...
متن کاملAutomatic Text and Speech Processing for the Detection of Dementia
Automatic text and speech processing for the detection of dementia Kathleen Fraser Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2016 Dementia is a gradual cognitive decline that typically occurs as a consequence of neurodegenerative disease, and can result in language deficits (i.e. aphasia). I show that linguistic features automatically extracted from the ...
متن کاملDesigning and implementing a system for Automatic recognition of Persian letters by Lip-reading using image processing methods
For many years, speech has been the most natural and efficient means of information exchange for human beings. With the advancement of technology and the prevalence of computer usage, the design and production of speech recognition systems have been considered by researchers. Among this, lip-reading techniques encountered with many challenges for speech recognition, that one of the challenges b...
متن کاملAbnormal laughter-like vocalisations replacing speech in primary progressive aphasia
We describe ten patients with a clinical diagnosis of primary progressive aphasia (PPA) (pathologically confirmed in three cases) who developed abnormal laughter-like vocalisations in the context of progressive speech output impairment leading to mutism. Failure of speech output was accompanied by increasing frequency of the abnormal vocalisations until ultimately they constituted the patient's...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013